3.2579 \(\int \frac{(5-x) \sqrt{2+5 x+3 x^2}}{\sqrt{3+2 x}} \, dx\)

Optimal. Leaf size=143 \[ \frac{191 \sqrt{-3 x^2-5 x-2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right ),-\frac{2}{3}\right )}{18 \sqrt{3} \sqrt{3 x^2+5 x+2}}+\frac{1}{45} \sqrt{2 x+3} \sqrt{3 x^2+5 x+2} (88-9 x)-\frac{761 \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{90 \sqrt{3} \sqrt{3 x^2+5 x+2}} \]

[Out]

((88 - 9*x)*Sqrt[3 + 2*x]*Sqrt[2 + 5*x + 3*x^2])/45 - (761*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqr
t[1 + x]], -2/3])/(90*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) + (191*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sq
rt[1 + x]], -2/3])/(18*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0808324, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {814, 843, 718, 424, 419} \[ \frac{1}{45} \sqrt{2 x+3} \sqrt{3 x^2+5 x+2} (88-9 x)+\frac{191 \sqrt{-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{18 \sqrt{3} \sqrt{3 x^2+5 x+2}}-\frac{761 \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{90 \sqrt{3} \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[((5 - x)*Sqrt[2 + 5*x + 3*x^2])/Sqrt[3 + 2*x],x]

[Out]

((88 - 9*x)*Sqrt[3 + 2*x]*Sqrt[2 + 5*x + 3*x^2])/45 - (761*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqr
t[1 + x]], -2/3])/(90*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) + (191*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sq
rt[1 + x]], -2/3])/(18*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{(5-x) \sqrt{2+5 x+3 x^2}}{\sqrt{3+2 x}} \, dx &=\frac{1}{45} (88-9 x) \sqrt{3+2 x} \sqrt{2+5 x+3 x^2}-\frac{1}{90} \int \frac{664+761 x}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=\frac{1}{45} (88-9 x) \sqrt{3+2 x} \sqrt{2+5 x+3 x^2}-\frac{761}{180} \int \frac{\sqrt{3+2 x}}{\sqrt{2+5 x+3 x^2}} \, dx+\frac{191}{36} \int \frac{1}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=\frac{1}{45} (88-9 x) \sqrt{3+2 x} \sqrt{2+5 x+3 x^2}-\frac{\left (761 \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 x^2}{3}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{90 \sqrt{3} \sqrt{2+5 x+3 x^2}}+\frac{\left (191 \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 x^2}{3}}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{18 \sqrt{3} \sqrt{2+5 x+3 x^2}}\\ &=\frac{1}{45} (88-9 x) \sqrt{3+2 x} \sqrt{2+5 x+3 x^2}-\frac{761 \sqrt{-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{90 \sqrt{3} \sqrt{2+5 x+3 x^2}}+\frac{191 \sqrt{-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{18 \sqrt{3} \sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.329322, size = 193, normalized size = 1.35 \[ -\frac{-188 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} \sqrt{\frac{3 x+2}{2 x+3}} (2 x+3)^2 \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right ),\frac{3}{5}\right )+2 \left (162 x^4-1071 x^3-2220 x^2-1049 x-62\right ) \sqrt{2 x+3}+761 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} \sqrt{\frac{3 x+2}{2 x+3}} (2 x+3)^2 E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right )|\frac{3}{5}\right )}{270 (2 x+3) \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*Sqrt[2 + 5*x + 3*x^2])/Sqrt[3 + 2*x],x]

[Out]

-(2*Sqrt[3 + 2*x]*(-62 - 1049*x - 2220*x^2 - 1071*x^3 + 162*x^4) + 761*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*
x)^2*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5] - 188*Sqrt[5]*Sqrt[(1 + x)/(3 +
 2*x)]*(3 + 2*x)^2*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5])/(270*(3 + 2*x)*S
qrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 141, normalized size = 1. \begin{align*}{\frac{1}{16200\,{x}^{3}+51300\,{x}^{2}+51300\,x+16200}\sqrt{3+2\,x}\sqrt{3\,{x}^{2}+5\,x+2} \left ( 194\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) +761\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) -3240\,{x}^{4}+21420\,{x}^{3}+90060\,{x}^{2}+97080\,x+31680 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^(1/2),x)

[Out]

1/2700*(3*x^2+5*x+2)^(1/2)*(3+2*x)^(1/2)*(194*(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticF
(1/5*(30*x+45)^(1/2),1/3*15^(1/2))+761*(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticE(1/5*(3
0*x+45)^(1/2),1/3*15^(1/2))-3240*x^4+21420*x^3+90060*x^2+97080*x+31680)/(6*x^3+19*x^2+19*x+6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{\sqrt{3 \, x^{2} + 5 \, x + 2}{\left (x - 5\right )}}{\sqrt{2 \, x + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^(1/2),x, algorithm="maxima")

[Out]

-integrate(sqrt(3*x^2 + 5*x + 2)*(x - 5)/sqrt(2*x + 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{3 \, x^{2} + 5 \, x + 2}{\left (x - 5\right )}}{\sqrt{2 \, x + 3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(3*x^2 + 5*x + 2)*(x - 5)/sqrt(2*x + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{5 \sqrt{3 x^{2} + 5 x + 2}}{\sqrt{2 x + 3}}\, dx - \int \frac{x \sqrt{3 x^{2} + 5 x + 2}}{\sqrt{2 x + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x**2+5*x+2)**(1/2)/(3+2*x)**(1/2),x)

[Out]

-Integral(-5*sqrt(3*x**2 + 5*x + 2)/sqrt(2*x + 3), x) - Integral(x*sqrt(3*x**2 + 5*x + 2)/sqrt(2*x + 3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{\sqrt{3 \, x^{2} + 5 \, x + 2}{\left (x - 5\right )}}{\sqrt{2 \, x + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(1/2)/(3+2*x)^(1/2),x, algorithm="giac")

[Out]

integrate(-sqrt(3*x^2 + 5*x + 2)*(x - 5)/sqrt(2*x + 3), x)